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ERROR PERFORMANCE OF DIRECT SEQUENCE SPREAD
SPECTRUM SYSTEMS ON NONSELECTIVE
GENERALIZED RAYLEIGH FADING CHANNELS

Robert Charles Hanlon, Ph.D., Major, USAF
Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1980

Abstract

The error performance of direct-sequence spread spectrum multiple-access
communications systems on nonselective fading channels is investigated. The
channels considered are those for which the fading intensity is slow,
nonselective, and exhibit a generalized Rayleigh distribution. _The generalized
Rayleigh distribution encompasses the important special cases of Rician
(specular plus Rayleigh) fading, Nakagami m-distributed fading, and Rayleigh
fading. Results are obtained for the special cases of a single cochannel
interferer without additive noise and multiple independent cochannel
interferers with additive white Gaussian noise. The results are developed as a
serles expansion in the moments of the cross-correlation between the spreading
codes (single interferer) or as a series expansion in the powers of the second
moment of the code cross-correlation (multiple interferers). To develop simple
estimates of the probability of error, empirical estimates of the low-order
cross-correlation moments of the spreading codes (taken to be Gold codes) are
developed from a generalized gamma density aﬁproximation based on the
cross-correlation moments for both Gold codes and random codes. Numerical
results for the probability of error are obtained with these estimates and
compared with the results based on exact moments developed from the code

cross-correlation probability density. (103 pages).
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Chapter 1

INTRODUCTION

1.1. Spread Spectrum Communications Systems

A spread spectrum communications system is characterized by the use of much
larger radic frequency bandwidths than required by the bandwidth of the
baseband informatiocn signal [Dixon, 1976al, [Glazer, 1973]. By effective use
of this additional bandwidth, spread spectrum systems develop several inherent
advantages over systems which use conventional, relatively narrowband
techniques. These advantages include [Cahn, 1973], [Dixon, 1976al], [Glazer,
19731: (1) enhanced resistance to interference, (2) capability for
multiple-access within a common frequency spectrum, (3) ability to operate
effectively within a frequency spectrum simultaneously being occupied by
conventionally modulated signals, (4) low detectibility by unintended
receivers, and (5) message privacy. These benefits are interrelated and arise
due to the methods employed to spread the bandwidth prior to transmission and
compress (despread) the bandwidth after reception by the intended recipient.
However, these techniques also give rise to two principal disadvantages:
relatively complicated transmitting and receiving equipment, and conflict with

current frequency allocation and assignment procedures.

There are several methods which are commonly used to spread the information
signal bandwidth. These include direct sequence code modulation, frequency

hopping, time hopping, swept frequency ("chirp") modulation, and hybrid




combinations of these methods. The basic underlying principle of spread
spectrum systems is that the intended recipient knows both the technique
employed and its specific implementation. The intended recipient is then able
to use this knowledge to invert the spreading process, thereby despreading the
received signal to reproduce the narrowband information signal. To clarify
these concepts, direct sequence modulation is examined in detail. Further, the
scope of the remainder of this paper is restricted to this form of spread

spectrum modulation.

1.2. Direct Sequence Code Modulation

In a direct sequence (DS) code modulation system, the information signal
(digital or analog) is multiplied by a spreading code sequence whose effective
bandwidth is much greater than that of the information signal. This
multiplication in the time domain is equivalent to convolution in the frequency
domain. If the baseband information signal is nominally bandlimited to the

interval (-B Bb) and the spreading code sequence is nominally bandlimited to

bl
the interval (-Bm, Bm), then the product signal in general occupies the

frequency interval (-B Bb+ Bm). Since in spread spectrum systems, Bm is

b2’
much greater than Bb’ then the product signal bandwidth is approximately that
of the spreading code sequence. For high rate spreading codes, the transmitted
power spectral density can be made quite low. As a result of the low power

spectral density, interference effects on conventionally modulated systems

operating simultaneously over scme small portion of the spread spectrum

bandwidth can be minimal, and the detectibility of the spread spectrum




transmission by conventional receivers is significantly reduced. Low
detectibility enhances message privacy and traffic flow security (precludes
knowledge of message traffic volume) and compounds problems in radio direction

finding.

For the purposes of this discussion, it i3 assumed that the information
signal is a binary digital signal, b(t), and the spreading code sequence
(sometimes referred to as a key sequence or signature sequence) is also a
binary digital signal, a(t), where both signals can take the value of eiiher
plus or minus one during their respective bit intervals. The bit interval of
the information signal is Td and the bit interval for the spreadirg code

sequence is Tc’ where T, is much greater than Tc to provide the .equired

d
greater bandwidth for the spreading code. A bit of the spreading code is
referred to as a chip to distinguish it from an information signal bit,
consequently, Te is referred to as the chip interval and Td as the bit
interval. The spreading code is repetitive with period LTc’ where L 1is the
number of chips per period, and 1is referred to as the code length. It is

assumed that the spreading code is synchronized to the information signal such

that one period of the spreading code occurs during each bit, i.e.,

T, = LT . (1.1




The product signal is [a(t)b(t)]. If the product signal is multiplied by
a(t), we have [az(t)b(t)]. Since a(t) is either plus or minus one, az(t) is
identically one, and [az(t)b(t)] is equal to b(t), which is the original
information signal. Therefore, the despreading operation is identical to the
spreading operation, that is, multiplication of a signal by the spreading code.
Clearly, the receiver requires prior knowledge of the spreading code. Hence,
the spreading code must be deterministie. However, if the code 1length is
fairly 1long, the spreading code appears to be random and is often referred to
as a pseudorandom code sequence. The receiver must not only know the code
sequence, but must also generate the sequence in-phase with the sequence which
has been applied to the information signal. In a system employing radio
propagation, a pure synchronous system is generally not possible. This is the
reason for using a periodic sequence. The periodic nature‘of the code sequence
enables the receiver to detect the phase and to synchronize to this phase.

If signals other than the intended spfead spectrum signal are received,
multiplication by the spreading code in the receiver spreads each of these
undesired signals to at least the b§ﬁdwidth of the spreading code. Narrowband
filtering after the multiplication passes the despread intended signal while
rejecting most of the power of unintended signals. This can be seen to be a
correlation receiver where the correlation is against the spreading code of the
intended signal. For conventional narrowband signals, their power spectral
densities are reduced by a factor of approximately (Bb/Bm)<<1 by the receiver's
despreading process. Even if the interference has the same bandwidth as the
spread spectrum signal, its power spectral density would be reduced by

approximately (BmIZBm)=1/2, that is, 3 dB. Further, a signal whose bandwidth




was on the order of the spread spectrum bandwidth would generally have an
inherently low power spectral density. To help minimize noise and interference
effects, a wideband filter can be used on the received signal prior to
despreading to eliminate undesired components outside the spread spectrum
bandwidth. It has also been shown that notch filters can be used to eliminate
narrowband interference wihout undue distortion of the spread spectrum signal

[Sussman and Ferrari, 1976].

1.3. Direct Sequence Multiple-Access Commupications

As indicated, the despreading process is fairly effective against undesired
signals. This feature can be used to obtain multiple-access capability by
assigning each of the various system users a unique spreading code. Provided
that the codes used do not exhibit a high degree of cross-correlation, then the
intended receiver is able to effectively reject the signals from the other
users. Use of codes to implement multiple-access communications is referred to
as code division multiplexing and offers an attractive alternative to
conventional time and frequency division multiplexing. The presence of the
other users in code division multiplexing results in an inherent cochannel
interference. To help minimize the cross-correlation between the assigned
spreading codes and thereby reduce the cochannel interference, special codes
such as Gold codes are generally used which are known to have good
cross-correlation properties [Di.. .., 1976al, [Gold, 1964], [Pursley, 1976]. It
should be noted that when Gold codes or other linear codes are used, they do

not provide message security in the sense of cryptographic codes [Dixon,

s A




1976a], [Scholtz, 1977], [Ristenbatt and Daws, 1977], but do provide a degree

of message privacy.

Figure 1 shows a basic direct sequence spread spectrum multiple-access
(DS/SSMA) communications system [Gardner and Orr, 19791, [Orr, 1977]. The
receiver is assumed to be frequency, phase and code synchronized to the
intended signal (channel 1). Although acquisition and maintenance of
synchronization is a major aspect of spread spectrum communications systems, it
is beyond the 3scope of this paper and is assumed to be perfect in all
subsequent analyses. Although the receiver is assumed to be synchronized to
channel 1, the transmitters are operating asynchronously relative to each

other.

1.4, Channel Model

In analyzing the performance of a communications system, the channel over
which the signals propagate must be modeled to account for all significant
sources of signal degradation. Along with the presence of additive random
noise, it 1is relatively common in systems utilizing radio propagation to
encounter random multiplicative signal distortion, that is, continuously time
varying received signal amplitudes. This random multiplicative signal
distortion is generally referred to as nonselective fading. Fading generally
arises out of conditions which give rise to multipath propagation (e.g.,

ionospheric reflection or tropospheric scatter propagation) where the multiple

paths are of varying lengths and nonstationary in nature (e.g., dynamic
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inhomogeneities in scattering volume). Nonselective fading implies that the

fading effects do not change appreciably witn frequency over the bandwidth of
interest. In addition to assuming that the fading is nonselective, it is also
assumed that the fading is slow , that is, the fading intensity does not change
appreciably over time periods on the order of the data bit interval. For the
purposes of this analysis, the additive random noise is assumed to be
independent zero-mean white Gaussian noise (uniform two-sided power spectral

density of /2 with normally distributed amplitude). Figure 2 depicts the

"o

channel model [Gardner and Orr, 1379].

The fading intensities, fi(t), are assumed to be generalized Rayleigh
variates (Appendix B). The generalized Rayleigh distribution encompasses a
wide class of distributions which are useful in the study of communications
over fading channels. In particular, the generalized Rayleigh distribution has
as special cases: the Rician (specular plus Rayleigh), Nakagami
(m-distributed), and Rayleigh distributions. Each of these distributions has

been extensively utilized for modeling fading channels.

1.5. System Zguations
For the spread spectrum multiple-access communications system depicted in

Fig. 1, the transmitted signal on the i-th channel can be represented as an

amplitude modulated carrier, that is, [Gardner and Orr, 1979]

)1/2

Si(t) = (2PTi

ai(t) bi(t) cos wct (1.2)
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where PTi is the transmitted power, ai(t) is the spreading code, bi(t) is the
information signal, and W, is the common carrier frequency. The channel model
as illustrated in Fig. 2 introduces nonselective random fading and random path
delays on each signal and random additive noise. The total received signal for

the case of M users is then [Gardner and Orr, 1979]

. M
r(t) = n(e) + ) (2p)'2

. fi(t-ri) ai(t-ri)
i=1

bi(t-ri) cos (wct + Oi) (1.3)

where the Pi are the effective received powers in the absence of fading, the

fi are the random fading intensities, the Ti are random time delays, and the
Qi are random phase angles. The fi' Ti’ and Gi are random processes; however,
the time dependence is not explicitly shown to simplify the notation. The Ty

are assumed to be independent and identically distributed (i.i.d4.) with
uniform distributions on the interval (0, Td). The @i are assumed to be
i.i.d. with uniform distributions on the interval (0, 2v). The assumption that
the Oi are uniform implies the transmitters are operating asynchronously (as
previously mentioned) and that the transmitters' relative phase drifts

overshadow their phase variations due to fading effects.

For coherent reception and under the stated assumption that the intended
receiver is perfectly synchronized (frequency, phase, and spreading code) to
the first signal, detection is accomplished by multiplying the received signal

by [a1(t-r1) cos(mct+@1)] and integrating over a data bi:t period, that is,

e Tt e oo L T e S T 0 U U S A Vi g -\l - . A7~ AATIA s mmen . m .



1"

correlating the received signal with the spreading code of the intended signal.

Since coherent detection is assumed, we can set T,k equal to zero, © equal to

1
zero, and restrict our interest to the data bit received during the interval

1

(o, Td) without loss of generality. The carrier frequency is much greater than

TS’, hence the contribution from the double frequency components is negligible

and the output of the correlation integrator is

R = b1 S+I+N (1.4)

where the intended signal component is

L

Ta
s= @22 ] a £,(8) (1.5)
0

the cochannel interference component is

T

¥ 12 (4 0
I-= . Z(Pi/Z) 5 dt a1(t)ai(t—fi)bi(t-Ti)t‘i(t-Ti)cos i (1.6)

and the additive noise component is

d
dt a1(t) n(t) cos wet . (1.7

=
"
O~

Under the assumption of slow fading, f1, fi, and Oi are relatively constant

over the integration interval. We can then write




12
i 2,00 1/2
S = (P1Td/2) f‘1 (1.8)
and
M 2,..1/2
1= 73 (Pde/2) c, f; cos e (1.9)
i=2 1i

where en is the normalized cross-correlation between codes a, and ai in the
11
presence of data, that is,

Ty

-1
°n,, © T, (f) dt a,(t)a, (£-7 )b, (£-Ty) . (1.10)

For equally likely data bits, the detection threshold is zero due to symmetry,

and the probability of error is

Pr{E} = %[Pr{S+I+N<0[b1=1} + Pr{-S+I+N>0|b =-1}] . (1.11)

By letting (Z = I+N) and by noting that the probability density of Z is

symmetric, we obtain for the average probability of error

@ W
- 0
Pr{E} = gdw (J)'dv Py, (V@) = 7 Pri lz1 > s} (1.12)

where Pgy is the joint probability density of the random processes S and Z.
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The expression for the probability of error given by Eq.(1.12) appears
quite simple; however, determination of the joint probability density Py, and
subsequent evaluation of the integrals is in general quite complicated due to
the numerous random processes involved. Three general approaches have been
used to evaluate or approximate the system performance. The first involves
determination of the equivalent signal-to-noise ratio (SNR) resulting from the
cochannel interference and additive noise, that is, [Gardner and Orr, 19791,

[Pursley, 19771

SNR = <32 / Var(z) . (1.13)

The equivalent SNR can then be taken as an indirect measure of the system
performance (bit error rate) or an estimate of the probability of error can be
developed by using the equivalent SNR in the well-known error expression for

signals in Gaussian noise

Pr{E} = %'erfc[(SNR/2)1/2]

(1.14)
where erfc(x) is the complementary error function. The second approach
involves bounding the error probability by utilizing the theory of moment
spaces [Borth, 1979], [Yao, 1976 and 1977]. The third approach, and that
addressed in the remainder of this paper, is to develop a series expansion for
the error rate in the cross-correlation moments of the spreading codes [Gardner
and Orr, 1979], (Hanlon and Gardner, 1979 and 1980]. Provided that the series

expansion converges rapidly, the first few terms provide an accurate estimate

N L
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of the average error rate.

1.6. Qutline of the Thesis

As indicated in the preceding section, the approach used in this paper to
evaluate the error performance is the use of series expansions of the error
rate in the cross-correlation moments of the spreading codes. To utilize this
approach, we require access to the c¢ode cross-correlation moments. This

problem is addressed first.

As seen later, in general, evaluation of the cross-correlation moments
requires knowledge of the cross-correlation probability density. Obtaining the
probability density can be very difficult, and to circumvent this problen,
accurate estimates of the moments are desired. In Chapter 2, an algorithm is
developed which can be used to evaluate the probability density from the joint
probability mass function for adjacent cross-correlation values for integral
offset. This algorithm is wused to evaluate the moments for the
cross-correlation for a set of Gold codes of length 31 and a subset of Gold
codes of 1length 127. Gold codes are used throughout the analysis as
representative spreading codes for illustration. These moments and the moments
of random codes of the same length (Appendix D) are used to develop an
empirical estimate for the low-order cross-correlation moments for Gold codes
based on modeling the cross-correlation distribution by a generalized gamma
distribution. The empirical estimates developed from the gamma density model

are used in the estimates of the probability of error developed in Chapter 3.
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The error performance analysis in Chapter 3 addresses two special cases.
First, the case of a single cochannel interferer in the absence of additive
noise. This case represents a performance bound for multiple-access
communications, that 1is, it represents an irreducible error rate in the
presence of cochannel interference and fading for arbitrarily large signal-
to-Gaussian-noise ratios. The second case addressed is for multiple
independent interferers with additive Gaussian noise. This case also gives
rise to an irreducible error rate for arbitrarily large signal-to-Gaussian-
noise ratios. As part of the analysis, simple single-term estimates for these

irreducible error rates are developed and evaluated.

In both cases mentioned above, the analytical results are based on the
developments given in Appendix B for generalized Rayleigh variates. 1In
particular, the probability of error is expressible in terms of the expressions
for the probability that one generalized Rayleigh variate exceeds another for

either independent or correlated variates.

Chapter 4 summarizes, provides conclusions developed from the results

presented earlier, and gives recommendations for further study in this area.

Throughout the paper, reference is made to mathematical functions and

formulas which are listed in Appendix A.

S AR . o O st
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Chapter 2

CROSS~CORRELATION BETWEEN SPREADING CODES

2.1. Croass-Correlation in the Presence of Data

In a direct sequence spread spectrum communications system, multiple-access
capability within a common frequency spectrum is obtained by assigning each
system user a unique periodic spreading code. The presence of multiple users
within a shared frequency spectrum results in an inherent cochannel
interference. However, if the cross-correlation between the spreading codes is
kept low, then the cochannel interference effects are relatively minimized
(subject to constraints such as number and proximity of other wusers) and the

likelihood of reliable communications is enhanced.

For direct sequence multiple-access systems, the output of the correlation
receiver, which is assumed to be synchronized to the intended signal, contains
cochannel interference terms of the form [Gardner and Orr, 1979], [Pursley,

19771

T3
-1

Lt [ dta
0

q (t-9¢) ai(t- Ti'd’i) bi(t- ri) (2.1)

J J

where aj is the spreading code on the intended signal, a; and bi are the

spreading code and data bit respectively on the i-th interfering user's signal,

¢j and ¢i set the phase of the spreading codes relative to their data bits, L
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is the length of the spreading codes (number of chips in one period of the

code), T, is the data bit interval (assumed to be identical for all users), and

Ty is the relative timing offset in the receiver between the intended user's

and interfering user's signals. This timing offset is due to asynchronism

between transmitters as well as differing propagation delays over the channel.

The are assumed to be uniformly distributed on the interval (O,Td). Both

T4
the spreading codes and data signal can assume values of +1 or =1, The
sprcading codes have a period of L chips where each chip is of duration Tc.

This period is assumed to correspond to one data bit interval.

The integral in Eq.(2.1) is similar to the cross-correlation between the
two spreading codes except for the presence of the interfering signal's data
bit. Consequently, it is referred to as the cross-correlation in the presence

of data and designated &. The factor b, considerably complicates analysis of

i
such forms. Although special sets of spreading codes which have good
cross-correlation properties (typically meaning bounded by some value much less
than L) are generally used, the presence of the data bit significantly alters
these properties [Massey and Uhran, 1975]. For instance, the magnitude of
cross-correlation values for Gold codes [Gold, 1964] of length 31 never exceeds

9. However, with data preseat, the magnitude of the integral in Eq.(2.1) for

the same codes can be as large as 21 [Orr, 19771, [Massey and Uhran, 19§75].

In evaluating the multiple-access system performance, two limiting cases
are of particular interest: the case of a single interferer and the case where
there are several simultaneous interferers. When referring to a single

interferer, this does not imply that there is only one other system user, but
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rather that only one of the other system users is simultaneously transmitting
(this case would typically occur if the various users each had a low
transmission duty cycle). Likewise, in the case of several interferers, say
M-1, there are in general more system users than M. However, there are only M

system users (M-1 interferers) simultaneously transmitting. In the case of

several interferers, the composite interference is a sum of integrals of the
form given by Eq.(2.1). Since both the data sequences and timing offsets are
independent, the interference in the multiple interferer case tends toward a
Gaussian random process. In either case, the probability of error is a
function of &. To exactly evaluate the error rate, the probability density of
8 would be needed. However, as shown later, determination of the probability
density can be quite complicated. For a single interferer, the problem of
determining the probability density can sometimes be circumvented by expanding
the conditional probability of error given ¢ in a series involving the powers
of (3/L). An estimate of the error rate can then be obtained by truncating the
series and taking the expectation. This approach has been shown to be quite
useful for.estimating error rates of direct sequence systems operating over
nonselective slow fading channels {Gardner and Orr, 1979], [Hanlon and Gardner,
1979 and 1980]. For the case of multiple interferers, if we approximate the
interference by a Gaussian random process, we can often restrict our interest
to determination of the second moment of the cross-correlation. Therefore, in

many cases the probability of error can be accurately estimated by determining

the first few moments of & or, more practically, an estimate of these moments.
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For a given multiple-access communications system, the code that is
designated aj depends on which user is taken to be the intended user for the

analysis. Likewise, a, depends on the signal whose contribution to the

i
cochannel interference is to be determined. In general, it could be any of the
other users. From a systems viewpoint, we are concerned with the performance
of the system over all possible combinations of users. Further, the codes
assigned to any or all users might be occasionally changed due to operational
considerations (e.g., use of dynamic code assignments to enhance the long-term
privacy or antijam characteristics). Consequently, exact analysis for a
particular pair of codes is of limited utility, and we are concerned primarily
with the expected performance (average error rate) over the entire set of
permitted codes. The analysis then addresses the average over all possible
users (i.e., aJ and a; are assumed to be equally 1likely to be any of the
possible code sequences, where i is not equal to j). This, coupled with the
presence of the randomizing effects due to the interfering signal's data
sequence and the relative timing offsets (ri), leads to the conjecture that the
low-order moments of the average cross-correlation in the presence of data 1is

close to those for random code sequences of the same length (L chips per data

bit). This conjecture is heuristically tested by example.

In Section 2.2 an algorithm for calculating the probability density for the
code cross-correlation in the presence of data is developed. Although our
immediate interest is in determining the average over all possible users
(entire code set), the algorithm can be directly applied to any subset of the
codes if, in a specific application, a priori considerations warrant such a

restriction. This probability density can then be used to obtain exact moments
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for whatever code set or subset is under consideration. The probability
density is used to determine the moments of the code cross~correlation in the
presence of data for a set of Gold codes of length 31 and for a subset of Gold

codes of length 127.

In Section 2.3 two approaches for estimating the low-order Gold code
moments are addressed. The first method directly estimates the low-order
moments by the corresponding moments for random code sequences of length L
(Appendix D). The second method empirically refines these estimates by using
‘ the moments of a generalized gamma density for which the parameters are chosen

to provide close agreement with the Gold code moments.

2.2. Probability Dﬁﬂﬁi&!

In Eq.(2.1), the product a_.a, b, is not periodic due to the presence of the

32101
factor bi‘ However, since the correlator is restricted to the interval

(O,Td), the integrand can be considered to be a sample of the product of

periodic codes defined respectively by aJ and the product aibi

integration interval. The cross-correlation between a pair of periodic

on the

synchronous codes is given by the number of agreements minus the number of
disagreements when the codes are compared chip-by-chip over one period of the
codes [Gold, 1964], ([Dixon, 1976al. For the codes to be synchronous, we
require the codes to have the same period and the same chip intervals and for

the chip intervals to coincide 1in time. For a pair of codes of length L

(period of L chips), we have
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¢c=2A-1L (2.2)

where ¢ is the cross-correlation value and A is the number of agreements.
Hence, ¢ is even for L even and odd for L odd (c mod2 = L mod2) and is

restricted to the closed interval [-L, LJ.

For aJ and the product aibi to be synchronous as defined above, we must

restrict Ti to be of the form

Ty =0T (2.3)

where n is equally 1likely to take any integer value on the closed interval
{0, L-1]. We designate the random variable for the cross-correlation for
integral offset by ¢. The probability mass function for ¢ is nonzero only for
¢ = m where m satisfies -L { m { L and m mod2 = L mod2. For an arbitrary timing

offset, Ti can be represented as

Ti = (n + x)Tc (2.4)

where again n 1is equally 1likely to take any integer value on the closed
interval [0, L-1] and x is uniformly distributed on the interval (0,1). 1In
this case, the code cross-correlation can take noninteger values due to partial
agreements and disagreements during the chip intervals. The case of arbitrary

timing offsets (to include nonintegral offsets) is more realistic since, in

general, it is neither desirable nor feasible to impose any synchronization on
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the system, due to the complexity and cost which would be involved. Let ¢, be

0

a random variable corresponding to the value of the cross-correlation when

x =0, and ¢ be the value when x = 1, For given values of c0 and Cqs the

1

cross-correlation varies linearly with x as each chip comparison transitions

from 1its value for ¢, to its value for . Consequently, the cross-correlation

for arbitrary offset, designated &, is given by

&= (1 - x)c0 + xc (2.5)

1 e

When ¢, = c,, & takes the value ¢y

of & taking the value k is equal to the probability that both ¢

.for all values of x. Hence, the probability

0 and c1 take

the value k, that is,

= k} = P!

Pr{éd = k} = Pr{co =k, ¢ K,k

1 (2.6)

where P; s is the joint probability mass function for the ordered pair (c0 =r,
?

e, = s). To obtain the density for &, we first obtain the conditional density

of & given cy and c,. Since x is uniform on (0,1), we have

-1 A
. min(co,c1) <A max(co,c1)

|c1 - co|
pa(llco,c1) = (2.7)

o , otherwise .

The density is then obtained by taking the expectation of the conditional
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density. Since the conditional density 1is constant, the density of & is
piecewise constant with discontinuities occurring whenever X = k for -L < k < L
and k mod2 = L mod2. For A on the open interval (k,k+2) where k is even for L

even and odd for L odd, we have (r mod2 = s mod2 = L mod2)

b e b e
pald) = (s-r)" P! _ &+ (r-s)” P! (2.8)
¢ r=-L sz=k+2 r,s r=k+2 s=-L rs

where any open sums are to be interpreted as zero. This equation can then be

manipulated into the form [Hanlon, Peterson, and Gardner, 1980]

(L+E)/2 E -1
p~(2) = (s=r) P, __ (2.9)
¢ r=0 s=(L+k+2)/2 er-L,2s-L ]
where (k < A < k+2, =L £ k  L=2, k mod2 = L mod2) and L
1 1
Pr,s =5 (P!'.,s + P;,r) . (2.10)

It should be noted that for the joint probability mass function P; 8! the order
L
of r and s is important since r designates the value of the cross-correlation

for x = 0 (co) and s designates the value for x = 1 (c1), whereas, in Eq.(2.9),

the result is independent of the order since Pr s is the average of P; s and
L 9
P! Consequently, Pr s ©an be considered to be the joint probability mass
?

s,r’

function of C and ¢, without regard to order.

1
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The relations shown in Eq.(2.6) and Eq.(2.9) demonstrate that the
distribution of & is dependent only on the joint probability mass function for
ad jacent cross-correlation values under the condition of integral offset. This
significantly reduces the complexity of calculating the density for arbitrary
offset between the codes. For example, consider the case of random binary
symmetric codes, that 1is, codes for which the value of each c¢hip is equally
likely to be either +1 or -1 and for which each chip 1is statistically

independent of all other chips. In this case, for r mod2 = s mod2 = L mod2,

_ ,=2L L L
Pr,s =2 {L:SJ @cﬁi] (2.11)
2

and from Eq.(2.6) and Eq.{(2.9), we have for the mass function

2
Pr{& = m} = 2~2L ’ L ] (2.12)
where (-L { m < L, m mod2 = L mod2), and for the density
(L+k) /2 L
pa(l) N ) ) [L] [L] (S-P)—1 (2.13)

r=0 s=(L+k+2)/2

where (k <A < k+2, -L { k < L-2, k mod2 = L mod2). Note that in the case of
random codes, the magnitude of the cross-correlation can be as large as L, the

code length (number of chips per data bit).




!

25

For a general set of periodic codes, determination of the probability
density is more complicated. Starting with Eq.(2.1) and noting that the data

bit on the interfering signal has a constant value, say b on the interval

i’

(0,7,) and transitions to a constant value, say b for the remainder of the

i!

integration interval, we have

¢ = b, Rji(ri) + by Rji(ti) (2.14)

where Rji and RJi are partial cross-correlation functions defined by [Pursley,

19771
71
-1
Ryj(ry) = T, é dt a,(t=b ) a (t-¢ -7 ) (2.15)
T4
° -1
Rygfty) = TG {dt ay(t=0) a;(t=0,-7,) . (2.16)
1

Since (bi’ bi) can assume any of the four values (:1,:1) with equal likelihood,

then for a given offset and phase, ¢ takes on the four values

c = :[Rji(ri) + Rji(ri)] (2.17)

with equal likelihood. It is readily shown by a change of variables (see also

Massey and Uhran {1975]) that these four values are the same as
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e = :[RiJ(Td—ti) + RiJ(Td'Ti)] . (2.18)
Then, for a given set of phases for aj and a;, varying the timing offset over
all possible integral values generates the same values for the
cross-correlation, probability mass function, and probability density whether
is taken to be the

a, is taken to be the intended signal's code sequence and a

J i

interfering signal's code sequence or vice versa.

Note, since the integration interval implied in Eq.(2.14) is broken, that
the set of values for the partial cross-correlation functions under varying
integral offsets changes if either code sequence is circularly shifted by gq
chips where q lies on the interval {0,L-1]. This circular shift is equivalent
to the code sequence being started with a different phase relative to its data
bit sequence. In principle, we could select the phase for each code to
minimize the average cross-correlation moments or average bit error rate.
However, for 1long codes this is impractical, and we do not assume any
particular set of phases for the codes, that is, the relative phase is assumed
to take on any of the L possible values with equal likelihood. We can
determine the values of P; s by tabulating the relative frequency of the

b

ordered pair (co,c1), where ¢, corresponds to 1

0 = nTc and ¢

corresponds to

i 1

Ti = (n+1)Tc, under exhaustive enumeration of the partial cross~correlation
functions over all values of n on the interval [0,L-1]; over all code pairs
(ajoa
of Eq.(2.17) and Eq.(2.18) obviates consideration of the cases where i is less

i)' for i greater than j; and over all phases of the codes. The symmetry

L t
than j. Pr,s is then the average of Pr,s and Ps,r' The values of Pr,s are then

used in Eq.(2.6) and Eq.(2.9) to obtain the probability density.
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For the case of Gold codes of length L, there are (L+2) distinct code

sequences which can be generated by a linear shift register with 2m stages,

where L = (2m - 1). For example, there are 33 possible codes of length 31
which can be generated by a 10 stage shift register. Let ago) represent the
nominal zero phase of code aj_relative to its data bit and agk) represent a

(0)
J

shift registers (the modulo 2 sum of two sequences from a linear shift register

phase shift of k chips relative to a . From the closure property of linear

is itself a sequence from that shift register){Gold, 1964] and the isomorphism

between the additive group {0,1} and the multiplicative group {-1,1}, it is

readily shown that the chip-by-chip product a(k)a(M) gk)

j i for a
, that 1is, the

not eqgual to
(0)

aim) and a

, can always be resolved as the product of a £S)

product of the nominal =zero phase of one of the Gold codes and some cther

member of the set of Gold codes. The values for Pr s generated by the code

(k)_(m) ’
i

combination aEO)a§3). Consequently, we only consider phase shifts of the

combination a then replicate the set of values generated by the code
interfering signal's code sequence rather than phase shifting both the desired
and interfering signals' code sequences.

code pairs, L

Calculation of Pr L+2]

s for Gold codes then iavolves ( >

different values for the relative timing offset, L different values for the

L

relative phase of a,, and 4 different data bit combinations. Hence there are

il
[2L2(L+1)(L+2)] values for the cross-correlation. Due to symmetry, only half of
these values need be calculated. Consequently, the number of cross-correlation
values calculated is proportional to the fourth power of the code length.

Figure 3 illustrates the results for a set of Gold codes of .ength 31 (m=5).

Without the presence of the data bits, the cross-correlation between Gold codes
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(ool (me2)/720 SLme2)/248

of length L is three-valued: 1, -1, 1) [Gold,
1964]. Figure 3a shows these three values (-9, -1, 7) and the average relative
frequency with which they occur for integral offsets for the Gold codes of
length 31, The results shown in Fig. 3b illustrate the effects of data on the
cross-correlation values for integral offset. Note that the probability mass
function is symmetric and the maximum magnitude of the cross-correlation (21)
extends considerably beyond the corresponding value without data present (9).
Figure 3c shows the average cross-correlation probability density and

probability mass function for arbitrary offset. As mentioned in the

development for arbitrary code sets, the density is piecewise constant.
2.3. Moments

Given the probability density, it is a simple wmatter to calculate the
moments of the cross-correlation. However, if we desire the average
performance, the number of code correlations needed to compute the density
rapidly becomes prohibitive as the code length increases. Hence, we are
motivated to develop an approximation to the average error rate which can be
evaluated without use of the probability density. One approach is to expand the

conditional probability of error given & in a power series of the form
Prield} = ] A (/L)%K (2.19)
k

where the Ak are the coefficients of the expansion. Provided such a series

exists and that it converges sufficiently rapidly, the expectation of the first
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few terms provides an accurate estimate of the error rate, This weculd 1limit
the problem to determining the first few moments of the cross-correlation or,
more practically, an estimate of these moments. This approach has been shown
to provide accurate estimates of the probability of error for direct segquence
systems operating over nonselective slow fading channels [Gardner and Orr,

19791, (Hanlon and Gardner, 1979 and 1980].

It has been previously conjectured that ¢the low-order mome.ts c¢cf the
average cross-correlation in the presence of data are close t¢ those for random
code sequences of the same length. Tt is shown 1in Appendix D that the
cross-correlation moments of order 2n for random code sequences can be
expressed as a polynomial of degree n in the code length. Table D.2 lists the
coefficients of these polynomials for the first five even moments. For large

values of L (long codes), the moments are shown to be approximately given by

1

n Al
~2n (20 - D! a § n| [211! {1 = [me+(n-m)°-n1/3L} . (2.20)

g™ > = L ol
2n+1 m=0 { o T

This expression is exact for the second and the fourth mwmoments which are,
respectively, (2L/3) and (7L2/5 - LL/5). These values differ significantly
frem the corresponding moments for integral offset, which are L and (3L2 - 2L)
(Table D.1). Consequently, when analyzing the performance of nonsynchronous
systems, estimates of the probability of error or related functions (e.g.,

signal-to-noise ratio) which make use of the cross-correlation moments, nust

consider arbitrary offsets rather than just integral offsets.

- e arv

[N .
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Tables 1 and 2 show the low-order moments of random codes and Gold codes
for code lengths of 31 and 127, respectively. As anticipated, the
corresponding moments are fairly close, particularly the second moments.
However, as the order of the moments increases, the values begin to differ
significantly. The randomizing effects of the interfering signal's data
sequence and the relative timing offset cause the density of the
cross-correlation for Gold codes in the presence of data to take a similar form
to that of random code sequences of the same length. One significant
difference is the maximum value of the cross-correlation magnitude. The effect
of this difference on the second moment for Gold codes relative tc random codes
is small due to the low probability that the cross-correlation for random codes
exceeds the maximum value for Gold codes. However, as the order of the moments
increases, the outlying values are weighted more in the calculation of the
moments and the difference in values for the moments is progressively more

pronounced.

To facilitate development and use of the empirical estimates, it is
desirable to consider a continuous density. If we develop a close
approximation to the low-order Gold code moments by use of the moments for a
continuous density, we would, in principle, be able to extrapolate the
approximation to provide estimates of the low=-order absolute moments or
low=-order nonintegral moments of tiie Gold codes. These generalized moments are
of potential use when the series expansion of the conditional probability of
error given & has a more complicated dependence on & than that shown in

Eq.(2.19).




TABLE

TABLE

1.

2.

CROSS-CORRELATION

Gold Codes Random
2.05 E 1 2.07
1.12 E 3 1.32
9.24 E 4 1.45
1.08 E 7 2.27
1.73 E 9 4.64

CROSS-CORRELATION

Gold Codes Random

8.75 E 1 8.u7
1.9T E U 2.25
6.58 E 6 1.04
2.96 E 9 6.99
2.04 E12 6.26

32

A2n

MOMENTS <&“™> (L = 31)

Codes Gamma Density
E 1 2.07T E 1
E 3 1.15E 3
ES 9.95 E &
ET 1.15 E 7
Eg 1.fF5 E 9

MOMENTS <a%Ps (L =

127)

Codes Gamma Density

E 1 8.47 E 1
E 4 1.93 E 4
ET 6.84 E 6
E9 3.24 E 9
E12 1.90 E12




33

The symmetry and general shape of the density for & (Fig. 3) suggest a
Gaussian approximation. The main disadvantage of using a Gaussian density is
that the range of the density is unbounded (tails extend indefinitely). This
tends to exacerbate the effect of the difference in the magnitude of the
maximum cross-correlation values. However, the density falls off fairly
rapidly and would provide reasonable approximations to the low-order moments,
which are of prime concern to our application. The effect of the tails can be
reduced if the Gaussian density is generalized slightly to increase the rate at
which the tails decay. One generalization of the Gaussian density is the
two-sided generalized gamma density. The form of the generalized gamma density

is given by

p(x) = A|x]*"" exp(-g|x|") (2.21)

where for the Gaussian density, o equals one and v equals two. By keeping a
equal to one and setting the second moment equal to that of the random codes,

i.e., 2L/3, the moments for the gamma density are then given by

& = @@yt rardyar)t Lt (2.22)
v Vv v v

To develop the empirical estimates, the value of v 1is then chosen to
approximately match the first five even moments of the gamma density to the
corresponding moments of the cross-correlation for Gold codes of length 31,
The appropriate value of v is about 2.4. It is expected that this choice 5f

v would also result in a good estimate of the low-order moments for Gols .odes
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of longer lengths due to (1) anticipated close agreement of the second moments,
regardless of code length, and (2) the dependence on code 1length for these
estimates is the same as in the single-term approximation for the cross-
correlation moments for random codes. Table 1 shows the moments for the
average cross-correlation for Gold codes of 1length 31, the corresponding
moments for random sequences of the same length and moments of the generalized
gamma density (v = 2.4). The moments of the generalized gamma density are seen

to agree very well with the moments of the Gold codes.

For Gold codes of length 127, the moments were calculated using a subset of

L 5 out of the possible 129 Gold codes (permitting 10 pairwise combinations out

of a possible 8256 combinations). We are still concerned primarily with the
, average over the entire code set; however, to reduce the calculations, we have
used this subset to approximate the desired results. Table 2 shows the
corresponding moments for this subset. The same general pattern appears as in
the case of Gold codes of length 31. The agreement in the second moments is

very good considering the small sample used.

The random code moments are of particular interest in related applications.

In order to take full advantage of the potential benefits of spread spectrum

systems, very long code sequences are desirable. These 1long code sequences

enhance the privacy and antijam characteristics. For a given type of code, the

f
]
|
’ longer the code sequence, the harder it is to effectively monitor or jam the
[ communications system on which it is used. However, there are practical limits

(technical and economic) to arbitrarily expanding the transmitted bandwidth

(pixon, 1976a]. In some applications then, the period of the spreading codes

i : -iiiilllllllllllliiili'
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is chosen to be much greater than the data bit interval. This provides for
both the maximum feasible degree of spectrum spreading and very long code
sequences. Let L be the period of the spreading codes and L' be the number of
chips per data bit, where L is much greater than L'. Then if the spreading
codes exhibit a high degree of randomness [Golomb, 1967] over a data bit
interval, such as in the case of cryptographic codes, we would expect that the
cross-correlation moments would be very closely approximated by the moments of

random codes of length L'.

ey
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Chapter 3

PROBABILITY OF ERROR

3.1. Single Interferer Without Additive Noise

For the case of a single interferer where the additive noise is negligible,
the probability of error represents an irreducible error rate which bounds the
multiple-access system performance. Again, the restriction of consideration to
a single interferer does not imply that there is only one other system user,
but rather that only one of the other system users is simultaneously

transmitting. In this case, from Eq.(1.12), the probability of error is given

by
Pr{E} = < Priaf, > f,} (3.1)
2 2 1
where
2 R |8 LR - (
a'= (Py/P,) lcn cos 9 y & = (/L) , 0O = 0, . 3.2)

It should be noted that f1, f2, 6n, and © are all random. To facilitate the

evaluation of this expression, the conditional probability of error given the

factor a is first determined.
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It is readily shown that if f has a generalized Rayleigh distribution, that
is, f ~ R(m,8,R), then the product af also has a generalized Rayleigh

distribution: af ~ R(m,aB,aZQ). From Appendix B, Eq.(B.26), we have

Pr{E|a} = '% (1-p2)m exp(-m3$/91) ) “(aq
k=0

k+m
2/91)

k

2 2 2
(-1 Gk(m,D1/B1,D2/82,p ) (3.3)

where Gk is given by Eq.(B.27) and B,, B,, D., and D

1» Bay Dy 5 are given by Eq.(B.21).

It should be noted that the funection Gk has no dependence on the factor a. The
probability of error is then obtained by taking the expectation of the
conditional probability of error with respect to both én and 6 which are

independent of each other., From the definition of the beta function and the

assumption that 0 is uniform on the interval (0,27), we readily obtain

(m.+1/2)k
(m+1)k

<Jeos o|%K*2By - B(1/2,keme1/2) / 7 = Pm"’a}

- : (3.1)

By applying this result to Eq.(3.3), we have [Hanlon and Gardner, 1980]

- k k
PriE} = 21 (‘“ "2](1-92)“' exp(-mg2/a,) | (=1)
2 o 1 k=0 (m+1)k
(P,0,/P 2 )" <J&_|P¥*2% G (m,0/B,,03/B,,07) . (3.5)
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The bivariate density given by Eq.(B.18) implicitly assumes that the m
factors are the same for both fading intensities. If we assume that the fading
intensities are independent, so that the joint density is given by the product
of the marginal densities, we can readily extend the results to the case where

the m factors are different (Eq.(B.11)) [Hanlon and Gardner, 1980]

m -m -1 [m,=-1/2 w (m,+1/2)
1 k
Pr{E} = 2 12 1m eXp(—m16$/Q1) Zm“(-ﬂk
1 k=0 "M%k
kem, 2k+2m, (ml-l) 2 (m2-1) 2
(m,P,0,/m,P, 2,) <[cnl > Ly (m,8779)) Ly = (-m,85/2,) . (3.6)

The practical usefulness of Eq.(3.5) or Eq.(3.6) depends on the series
converging sufficiently rapidly to enable c¢lose approximation of the average
probability of error by one or twc terms of the series. Since the
cross-correlation moments for the spreading codes are typically very small for
well-designed DS/SSMA systems, rapid convergence is quite feasible provided the
ratio (m1P292/m2P1Q1) is not large. Table 3 1lists the single-term

approximations for the more important special cases of the generalized Rayleigh

distribution.

Numerical evaluation of the average probability of error requires
determination of the absolute moments of the normalized code cross-correlation,
This can be very difficult, particularly since for generalized Rayleigh or

Nakagami fading, we require nonintegral absolute mcments. In general, we would

need the probability density of the code cross-correlation; however, for any
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TABLE 3
SINGLE~TERM APPROXIMATIONS FOR THE PROBABILITY OF ERROR FOR SPECIAL CASES OF

GENERALIZED RAYLEIGH FADING FOR A SINGLE INTERFERER

2
2 2 ., 2 2 :
RICIAN: [(1-p%)/4] exp(-87/Q,) (P_2,/P, Q) <85> |1 + 5 :
1" 272" 1 n 22a. (1-5%) .
219, :
(m1=m2=1) ’
/2 g1/2 :
where w2 = 82 521 -0 81 Q1 Q2 ]
{
) t
. 2m-1 2 m m (. |2m i
NAKAGAMI : [ o ] [(1-p7)/807 (P9, /P, 0) <!cnl > %
(m1=m2=m, 8,=8,20)
RAYLEIGH: [(1-0%)/4] (P.9./P.Q,) <&%>
‘ 2211 n

(lll1 =m2=1 , B1=32=0)

- m

2 1
(m,P,2,/m P 0,)

2m . -~1 -m,
INDEPENDENT FADING: n exp(-m18f/91) 2

(p=0)
(m2-1) 2m

1
- Q &
Lm1 ( masg/ 2) <lcn| >

Note: for Gold codes, <6§> = 2/3L and <f6n,2m> is approximately given by

Eq.(2.22), after normalization.
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reasonably long code, %etermination of the probability density is
computationally impractical. Therefore, estimates of the moments are desired.
For the case of Gold codes, an empirical estimate of the low-order even moments
of the cross-correlation is given by Eq.(2.22). By straight forward
extrapolation of this result to nonintegral absolute moments, we can readily
evaluate the single-~ or two-term estimates of the average probability of error,
grovided the parameter m 1s net too large, i.e., provided the order of the

moments required is not too large.

Figures 4 through 11 are plots of the average probability of error, the
single-term estimates using the approximate moments given by Eq.(2.22), and the
corresponding aproximation error for several examples of Rician and Nakagami

2

fading. The curves are drawn for the case of equal power (P1<f1>=P2<f§>),

equal fading statistics (m1=m2, B,=8

1=8 Q1=Q2), and a subset of Gold codes of

length 127. The plots of the exact values for the probability of error were
obtained by evaluating the moments from the actual probability density for the
code cross-correlation taken over a subset of 5 of the 129 Gold codes of length
127 (permitting 10 pairwise combinations out of a possible 8256 combinations).
The probability density is determined by tabulating the relative frequency of
cross-correlation values for all possible integer offsets (Ti=nTc, 0<n<L) for
each of the code pairs, for all possible data sequences on the interfering
signal (bi)’ and for all initial phases of the interfering signal's spreading
code (circular shifts of the code within the data bit interval) [Chapter 2],
{Hanlon, Peterson, and Gardner, 1980]. This was practicable due to the short
code length and the 1limited code set. The plots show that the single-term

estimates are quite good over a wide range of the channel fading parameters.
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The Rician results are given for specular power ratios of 0, 50, 67, and 75
percent, which correspond to power factors [R/(1-R) = 82/91 of 0, 1, 2, and 3.
As the correlation of the underlying Gaussians increases ( p increases), the
correlation between f‘1 and f2 increases and the probability of error drops
towards zero. As the fading factors more closely agree statistically, the
signal and the interference tend to maintain their relative strengths at the
input to the receiver. As a result, it is less likely that the sum of the
signal and the interference will result in a sign reversal in the detector and
cause a bit error [Hanlon and Gardner, 1979]. This is also true for Nakagami
fading and, 1in general, the import of the fading is significantly reduced for
nighly correlated channels, As the Rician specular power ratio increases
(fading decreases), the probability of error decreases; however, the
approximaticn error tends to increase. Use of more than one term of the series
in the approximation would result in a wider range of the parameters over which

close agreement is attained.

The Nakagami results are very similar to those for Rician fading. The
error rate decreases as the fading decreases (m increases) and the
approximation error tends to correspondingly increase., The empirical estimates
of the code cross-correlation moments can be used to calculate additional terms
of the series to improve the accuracy, provided m is not made larger than about
y, For larger values of m, the order of the moments required are too large to
obtain good estimates of the moments from the empirical moments [Hanlon,

Peterson, and Gardner, 1680].

Vi g TN
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The average probability of error for Rician fading is dominated by the 3
depth of fading on the intended signal as evidenced by the exponential factor,
exp(-6§/91). A similar dependence for Nakagami fading is reflected in the
exponential dependence on m (order of the moments of the code
cross-correlation). Since we have implicitly assumed that the m factor is the
same for both fading intensities, the distinction is difficult to see. For the
case of independent Nakagami fading, Eq.(3.6) clearly shows that the

exponential dependence is on m, (fading on intended signal) rather than m

2
(fading on interfering signal).

While the performance for both the Rician and Nakagami fading cases
demonstrates high dependence on the likelihood of deep fades on the intended
signal, the performance shows significantly different dependence on the code
length in the two cases. This is readily seen by comparing the single-term

a2

approximations. For Rician fading, the approximation is proportional to <cn>

and, hence, from Eq.(2.22), L-1, whereas, the single-term approximation for the

Nakagami case is proportional to <|6n|2m>, or equivalently, L™". The basis for
this difference can be seen by looking at the case of independent channels.
For independent channels, the error rate can be alternatively represented as

[Appendix C], [Hanlon and Gardner, 1979]

k/2 (k-1)(0)

15 1.k K K
PriE} = 3 kzl <8 I <Jeos O] (p /2 ) £ 2 (3.7

where <f§> is the k-th moment of the fading intensity on the interfering signal

and pgk-1)(0) is the (k-1) derivative of the probability density for the fading
1

o ——
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intensity of the intended signal evaluated at zero. This expression requires
the derivatives at the origin to be finite, which, in general, is not the case
for the generalized Rayleigh distribution. By restricting our interest to
integral values of (2m1), we can see by expanding the probability density for
f, in a power series that the first nonzero derivative at the origin is for k

1

equal to 2m1. The larger the value of m (the shallower the fading on the

1
intended signal), the higher the order of the code cross-correlation moment
which first contributes to the series. This is exactly the effect seen in
Eq.(3.6), which can also be derived from Eq.(3.7) when (2m1) is an integer.
From Eq.(2.22) we see that the first term varies as L™®. For Rician fading, m
is equal to one and the first term is always proportional to the normalized
second moment, which is to say, inversely proportional to the code length.
Consequently, the degree of improvement in performance to be expected from
increasing the code length is highly dependent on the form of the distribution
of the intended signal fading intensity, particularly the behaviour
(derivatives) of the distribution near the origin (region of deep fades). As a
result, we -cannot, in general, approximate a given fading distribution with
another distribution. For example, Nakagami gives the transformation for
approximating a Rician distribution by a Nakagami distribution as [Nakagami,

1960], [Nakagami, et al., 1957]

Q = O + g2 , m=[1- (su/ 95)]" . (3.8)

This transformation is obtained by equating the second and fourth moments

(Eq.(B.4)). 1In terms of the specular power ratioc (Eq.(B.6)), this implies
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m=(1-8"". (3.9)

Under this transformation, specular power ratios of 0, 50, 67, and 75 percent
correspend to m values of, respectively, 1, 1.33, 1.8, and 2.29. It is clear
from Fig. 4 and Fig. 8 that this transformation does not provide comparable
performance measures in terms of bit error rates. Likewise, any transformation
which depends primarily on equating moments and, therefore, on the overall
behaviour of the distribution, generally provides poor agreement since the
error rate is determined primarily by the behaviour of the distribution in the
region of deep fades [Barrow, 1962]. Regardless of the form of the
distribution, relatively long code sequences are required to maintain low error
rates unless the fading on the intended signal is very shallow or the fading

correlation approaches unity.

3.2. Multiple Independent Interferers With Additive Noise

For the case of several simultaneous interferers, the individual
interference terms in Eq.(1.9) are independent of each other due to the
presence of their respective data bits and timing offsets. The probability
density for each term will be symmetric due to the cross-correlation factors
and phases. These factors also tend to scale the individual terms towards zero

([cnl << 1, |cos 8| £ 1), i.e., towards their means. Provided the P, are on the

i
same order (which will be assumed), then none of the individual terms dominates
the series. Under these conditions, the composite interference at the output

of the correlator (Z) will be asymptotically normal with zero mean and variance
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M
) ) 2,y a2 2
Var(2) = Var(N) + Var(l) = (non/u) + (Td/u)<cn> i-zz pi <f‘i> . (3.10)
The probability of error is (Eq.(1.12))
Pr{E} = JZ-Pr{ [z] > s} . (3.11)

Since Z is assumed to be zero-mean Gaussian, [Z| is one-sided Gaussian, that
is, generalized Rayleigh: [Z]| ~ R[1/2,0,Var(Z)]. Evaluation of the probability
of error then reduces to determination of the probability that one generalized
Rayleigh varjate is greater than another when they are independent. From

Eq.(B.16), we have

f 2
-1/2 o (m,+1/2) k+m, (m —I)Lm B
1™ 2 1 K K 1M 1°1
Pr{E} = exp(-m . g8,/Q,) | ——— (-1)"y L ——=| (3.12)
2 [ 1 J 17171 k=0 (m1+1)k k Ql
where, for M system users,
4m_Var(Z) m
y= ———— = LaswmI 4 a1 <33 (2, + 82)] (3.13)
P.Q T2 Ql G n 1 1
1"1°4d
1 9 2 2
o= g 1 [Pi(a; +8D)/P (2, + 8] (3.18)
i=2
and SNRG is the signal~to-Gaussian-noise ratio defined by

< - 2 -
oNRG =z [P1Td / 2 Var(N)] = 2P1Td/ ng * (3.1%)
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The usefulness of the series in Eq.(3.12) is restricted to values of y which
are less than one. For values of y greater than one, the series does not
converge. There are two approaches to circumvent this problem. First, we can
evaluate the complement of the probability to obtain an expression for the

probability of error when y is greater than one, that is,

Pr{E}

(1 -pPris2 |2{}]1 /2

o (1/2) (m,-1)
~-1/2 k -k 1 2
= {1 -y D TR -v) Leyi/p (-mi8770201 7 2. (3.16)
k=0
Alternatively, we can use the change of variables
t=z=y/(1 +y) . (3.17)

By using the binomial theorem and Eq.(A.27), we then obtain

m,-1/2 @ (m,) n+m
1 1 2 1'n 1
Pr{E} = 3 n, exp(-m,87/2,) ngo -t

n (m1+1/2)k(-n)k (m1-1)

2
ko (@) (@ ¥ Ly (m,8,78) . (3.18)

Since t is always less than one and less than y, the convergence properties of
this expansion are much better. For small values of t, i.e., t much less than

one, the average probability of error is very closely approximated by
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m m.-1/2
Pr{E} = 1 0 ! exp(-m 82/9 ) . (3.19)
2 oy 17717
If the signal-to-Gaussian-noise ratio is made arbitrarily large, we have
~2 2
lim y = oam, (M=1) <@%> (1 + B-/Q.) . (3.20)
1 n 1"
SNRG*m

For reasonably long code sequences, <6i> is very small and y tends :o be small.
In this case, ¢t and y are approximately equal and Eq.(3.19) very closely
approximates the average probability of error. Since we are considering an
arbitrarily large signal-to-Gaussian-noise ratio, this represents an
irreducible error rate due to cochannel interference and fading. Table 4 lists

the estimates of the irreducible error rates for the various special cases.

We have analyzed the multiple interferer case by assuming that the
composite interference is asymptotically normal (Gaussian) with zero mear. As
a result, the interference was specified by its variance (power). We would not
typically expect the Gaussian assumption to hold if the number of interferers
was very small (say less than five). This can be tested by looking at the
single-term estimates for the irreducible error rate, evaluating them for a
single interferer (M=z=2), and comparing the estimates with the results of
Section 3.1 for a single interferer. The single~term estimate for the

irreducible error rate for multiple users when M equals two is given by

m1-1/2
2,

™

Prig} » — exp(-m, £/0,) [ <&D>p (R » &P 2] b | (3.21)




TABLE Y4

SINGLE-TERM APPROXIMATIONS FCOR THE IRREDUCIBLE ERROR RATE FOR
INDEPENDENT USERS
1 m, m1-1/2 >
GENERALIZED RAYLEIGH: > t o exp(-m181/21)
1
m,~-1/2 m
I 2,n A2 2,0 1™
= 3 m ]exp(-m181/w1)[dm1(M-1)<cn>(1 + 81/w1)]
IR 2 2
where a = (M=1)"' ] [P.(2,+85)/P (2. +8%)]
. ivii 171
i=2
2 . 2 2 2
RICIAN: t exp(-81/Q1) /4= a(M-1)<cn>(1 + 81/91) exp(-81/Q1) /4
(m1=1)
p
m m,~-1/2 m,-1/2 m
NAKAGAMI : 1 0 17 = 1 (am, (M-1)<3%>]
2 ml 2 m1 1 n
(81=0)
RAYLEIGH: 1 e =1<851712) = L 5 (ma1)<8%>
2 n 4 n
(m1:1, B1=0)

~

Note: for Gold codes, <c§> = 2/3L.

MULTIPLE
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Comparison with the single-term estimate for independent fading given in Table
3 indicates that there can be a significant difference. However, for Rician
fading on both channels (m1=m2=1), the result given by Table 3 is identical to
that given by Eq.(3.21) for Rician fading on the intended signal (m1=1). This
comparison extends to Rayleigh fading when 81 is set equal to =zero in the
Rician estimates. This agreement arises because the single-~term single-
interferer estimates in both cases depend only on the interference power, In
these cases, the Gaussian assumption for the interference is valid even when
the number of interferers is minimal. However, comparison of the Nakagami
results (s1=82=0) does not provide the same agreement unless we look at the
special case of Rayleigh fading. The difference arises because the Nakagami
multiple user result is dependent on the m-th power of the interference power,
that is, proportional to (<6i>m); vwhereas, the single interferer result

(Section 3.1) depends on the (2m)-th absolute moment.

Although the expression for the probability of error does not appreciably
simplify for the Rician case (m1=1), for Nakagami fading statistics for the

intended signal (81=0), Eq.(3.12), Eq.(3.16), and Eq.(3.18) reduce to

1 oy, m1-1/2
PriE} = 7 ¢ m 2F1(1/2,m1;m
1

+15t) =

|

: I (m,,1/2) (3.22)
where 2F1 is a hypergeometric function and It is a normalized incomplete beta
function. This expression is equivalent to a result given by Barrow [1962].

It i3 readily shown that

cha et e e
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-1/2 ___t .
2(me1) 271

2F1(1/2,m;m+1;t) = (1-t) (3/2,m+1;m+2;t) . (3.23)

By truncating both hypergeometric series in this relation, we obtain the bounds

mt . . _y=172 t
L1+ 3@ 1) 1 £ SF(72,mimet5t) < 0 (1-t) = (@) 1. (3.24)
Extension of these bounds to the probability of error for Nakagami fading is

straightforward and provides the estimate (for small t):

m m,-1/2 ti{m,-1)
Pr{E} = ;} g ] 1m [ 1+ (1-t)"1/2 -m 1. (3.25)
1 1

For the case of Rayleigh statistics (m1:1, 81=0), Eq.(3.22) reduces further to

the well-known result:

PriE} = ‘5[1 - (1-t)

172 -1/2

1= 1otV (3.26)

Figures 12 and 13 are plots of the average probability of error versus the
signal-to-Gaussian-noise ratio for the multiple user case for Rician and
Nakagami (m-distributed) fading, respectively. DBoth sets of curves are drawn
for equal effective power (Pi = P1), mean square values normalized to one
(<f§> = <f§> =1), and <éi> = 2/3L. The figures clearly demonstrate that the

average probability of error saturates at an irreducible error rate for

PRSP
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arbitrarily large signal-to-Gaussian-noise ratios. This effect is due ¢to the
combination of cochannel interference and fading on the intended signal. The
deeper the fading on the intended signal or the greater the number of
interferers, the more likely that the intended signal component falls below the

level of the cochannel interference component in the receiver, thereby

resulting in an error.



Chapter 4

SUMMARY, CONCLUSIONS, AND RECOMENDATIONS

4.1, Summary

This study has investigated the error performance of direct sequence spread
spectrum multiple-access communications systems on nonselective fading
channels. The receiver model used throughout the analysis is a conerent
correlation receiver, The receiver correlates the received signal against a
synchronized copy of the intended signal's spreading c¢ode sequence. The
channel model assumes slow, nonselective fading where the fading intensities
are distributed as generalized Rayleigh variates. Results are obtained for the
special cases of a single interferer without additive noise and multiple
independent interferers with additive noise. The results are developed as a
series expansion in the code cross-correlation moments (single interferer) or
as a series expansion in the powers of the code cross-correlation second moment
(multiple interferers). To develop simple estimates of the probability of
error, empirical estimates of the low-order cross-correlation moments of the
spreading codes (taken to be Gold codes) are developed from a gamma density
approximation based on the cross-correlation moments for both Gold codes and
random codes. Numerical results for the probability of error are obtained with

these estimates and compared with the results based on exact moments developed

from the code cross-correlation probability density.
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4.2, Conclusions

The analysis developed in this paper has shown that the method of series
expansion in the code cross-correlation moments prcvides a tractable solution
to evaluation of the error performance of direct sequence multiple-access
communications systems operating over nonselective fading channels, in
particular, truncation of the series provides simple single-term estimates
which are accurate over a wide range of the channel fading parameters. These
results show that the error rate 1is highly dependent on the form of the
intended signal's fading distribution in the region of deep fades.
Consequently, approximation of a given distribution by another distribution
(e.g., approximation of a Rician distribution with a Nakagami distribution) is
generally not feasible unless great care is taken to match the distributions in
the region of deep fades. As a result, the channel must be carefully modeled.
Use of the generalized Rayleigh distribution has encompassed the results for a

wide c¢lass of fading distributions.

Use of empirical estimates of the cross-correlation moments has been shown
to provide highly accurate estimates of the error rate unless the fading is
very shallow. In addition, it has been shown that the direct use of moments
based on integral timing offsets between the codes does not generally provide
good estimates. The moments must be calculated for arbitrary timing offsets;
however, the moments for arbitrary offset can be readily developed from the

moments for integral timing offsets.
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It has also been shown that the effect of fading on the error rate is
significantly reduced for highly correlated channels. Further, unless the
fading correlation is either close to unity or the fading on the intended
signal is very shallow, long spreading codes will be required to maintain low

error rates.

4.3. Recommendations

The analysis presented here has been restricted to the case of slow,
nonselective fading. With this basis, extension of the results to relatively
fast, nonselective fading would provide additional insight into direct sequence
system performance over generalized Rayleigh fading channels. Alternatively,
the effect of time variations in the channel characterization could be

explored, that is, the channel fading parameters could be taken as random

variables with some assumed distribution. The analysis would proceed as
presented and then the expectation over the fading parameter distributions
would provide the long-term average error rate. In general, this extended
analysis may not prove tractable. However, the single-term estimates of the
average probability of error could be analyzed in this fashion with reasonable

anticipation of success.

An alternate area of investigation would be the analysis of diversity gain
(e.g., space diversity) possible with direct sequence systems operating over
generalized Rayleigh channels. This analysis would be particularly important
for channels whose fading depths were on the order of Rayleigh fading or

deeper.
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APPENDIX A

MATHEMATICAL FUNCTICNS AND FORMULAS

To simplify the references in this appendix, they are abbreviated to two
letters designating the work, followed by the section, page or equation number
in the reference. The two-letter abbreviations correspond as follows:
AB-[Abramowitz, 1964], ER-[Erdelyi, 19531, GR-{Gradshteyn and Ryshik, 1965],
HN-[Hansen, 1975]), MO-[Magnus, Oberhettinger, and Soni, 1966] RA-[Rainville,

19601, VT-[Van Trees, 1968].

1. Pochhammer's symbol [AB6.1.22, ER1.21(5), GRp.xliii, HN2.4, RAs.18]

(a)k = a(a+1)(a+2)...(a+k=1) = T(a+k) / T(a) , (a)O = 1 (a.1)

2. Hypergeometric function [AB15.1.1, ER2.1.1(2), GR9.100, HN10.9.2, RAs.29(1)]

@ (a)k(b)k
(c)k k!

2F1(a,b;c;x) = x< {A.2)

k=0

3. Linear (Euler) transformation for hypergeometric function [AB15.3.3,4;

ER2.1.4(22),(23); GR9.131(1); HN10.9.2; MOp.47; RAs.38(4),(5)]

2F1(a,b;c;x) = (1 - x)c-a-b F1(c-a,c-b;c;x)

2

-a PR S
(1 -x) SF(aye=biesT77) (A.3)




73

4. Hypergeometric function with unit argument [AB15.1.20, ER2.1.3(14), GR9.122,

HN7.4.14, MOp.U0O, RAs.32]

2F1(a,b;c;1) = [r(e) T(c-a=-b)] / [T(c-a) T'(c-b)] (4.4)

where ¢ #0, -1, -2, ... : Re (ec-a-b) > 0.

5. Confluent (degenerate) hypergeometric function [AB13.1.2, ER6.1(1),

GR9.210(1), HN10.8.3, MOp.262, RAs.£8(1)]

o (a)k

ehe - —_———— 3
1F1(a,b,x) = (b)k - X (4.5

k=0

6. Kummer's transfcermation for the confluent hypergeometric function

(AB13.1.27, ER6.3(7), GR$.212(1), HN10.8.3, MOp.267, RAs.69(2)]

1F1(a;b;x) = e* 1F1(b-a;b;-x) (A.6)

7. Generalized hypergeometric function [ER4.1(1), GR9.14(1), HN10.48.1, MOp.62,

RAs.U4(2)]

(al)k(az)k...(ap)k

ko () by) (o) Kkt

k
X (A.T)

t~18

qu(a1,a2,...,ap;b1,b2,...,bq;x) =

- =

8. Confluent hypergeometric function of three variables [HNUB,21.18]

w (a)
®3(a,b;C:X.y.z) = )

(b) .
k L x% yn 2" (A.8)

k! n! m! (¢)

k,n,m=0 k+n+m




T4

9. Binomial function (binomial theorem) [AB15.1.8, ER2.8(4), HN10.4.6, MOp.33,

RAsS.U5(3)]

-a 3 - . .
(1 =-x) " = 1Fo(a,,x) = 2F1(a,b,b,x) (4.9)
10. Binomial coefficient [AB6.1.21, ER1.21(6), MOp.4]
X
n

{ ; } = T(x+1) /7 [T(y+1) T(x~y+1)] ,{ ] = (-n° (-x) / n! (4.10)

11. Generalized Laguerre function [ER6.9.2(37), MOp.336]

L(a)(x)

r

[“;3] Filrmastin L = L0 (A.11)

When r is a nonnegative integer, the Laguerre functions are Laguerre
polynomials [AB13.6.9, ER6.9.2(36), GR8.972(1), HN10.8.4, RAs.112(1)]. For

example,
Léa)(x) s 1, Lsa)(x) = a+l-X, Léa)(x) = %[xz-Zx(a+2)+(a+1)(a+2)] (A.12)

12. Gamma function (Euler's integral of the second kind) [AB6.1; ER1.1; GR8.31;

MOp.1; RAs.3,s.12]

T(x+1) = [ dat e - t*, Rex >0 ; T(x+1) = x I'(x) = x! (4.13)

raredes . -
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13. Legendre's duplication formula [AB6.1.18; ER1.2(15); GR8.335(1); HN2.6,2.7;

MOp.3, RAs.19]

2x-1 2k

r(ex) = 2 T(x)T(x+1/2)/T(1/2), (2x)2k =2 (x)k (x+1/2)k (A.14)

14. Incomplete gamma function [AB6.5, ER9.1, GR8.35, EN6.10.1, MOp.337]

1 _.a

T(a,x) = T'(a) - a~ x (Filasast;=x) (4.15)

" = g
[o%
ot
(]
cr
[}

The integral representation requires larg xl < m,

i15. Beta function (Euler's integral of the first kind) [AB6.2, ER1.5, GR8.38,

MOp.7, RAs.16]

]
B(a,b) = [(a) T(b) / I(asb) = [ dt £371 (1-£)°!
0
/2
=2 [ dt (sin £)%®77 (cos 1)2°"] (A.16)
0

The integral representations require Re a > 0, Re b > 0.
16. Incomplete beta function [AB6.6, ER2.5.3, GR8.391, HN6.11.12, MOp.356]
X a=1 b-1 -1 _a
B (a,b) = [dt ¢ (1-t) =a  x ,F (a,1-bja+l;x) (A.17)
0

17. Normalized incomplete beta function [AB6.6,26.5; ER2.5.3, GR8.392]
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Ix(a,b) = Bx(a,b) / B(a,b) = 1 - I1_x(b,a) (4.18)

18. Error function and complementary error function [AB7.1, ER6.9.2(23),

GR8.25, HNp.507, MOp.349, RAp.127]

t2

X
erf(x) = [2/T(1/2)]1 [ dt e”® = 1 - erfe(x) = 2 P(2"/%x) -1
0
= 2x |F,(1/2;3/2;-x7) / T(1/2) (4.19)

where P is the standard normal cumulative distribution function.

19. Modified Bessel function of the first kind (order r) [AB9.6.47,

ER7.2.2(12), GR8.445, HN10.7.11, MOp.66, RAs.65(1)]

r

I(2x) = x 0F1(;r+1;x2) / T(r+1) (4.20)

20. Hille-Hardy formula (bilinear generating function for Laguerre polynomials)

[ER10.12(20), GR8.976(1), HN48.21.20, MOp.242, RAs.120]

_kt ko (a) (@)oy - -1 -a/2
kZO @, * M (x) L2 (y) = (1-6)7" r(ast) (xyt)

1/2

explt(xsy)/(t-1)] I_[2(xyt) "/(1-t)1 , [t] <1 (a.21)

21. Bilinear generating function for Laguerre polynomials [HN48.21.18]

|
1;
i
:
|
1
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@ (m+1) (c+1)

. kK .k, (a) (e), y _ m ~a-1

Lo Corma) tT L L ) = (1-t)

explt(xsy)/(t=1)1 <b3[-m,c-a+m;c+1;y/(1-t),yt/(1-t),xyt(1-t)-2] (4.22)

For m equal to zero and ¢ equal to a, this reduces to the Hille-Hardy formula.

22. Laguerre series for modified Bessel functicns of the first kind [AB22.9.16,

ER10.12(18), GR8.975(3), HNUB.T.2, MOp.242, RAs.113(2)]

o 1 2

z t

0K 2 L@ 02y | raen) (x0)7® et T (2xt) (4.23)
k=0 K a

(1+a)k

23. Generalized Marcum's Q-function [VTp.l411]

Qm(a,b)

[ dx a (x/a)® expl- ‘;‘(x2 vad)l 1 ;(ax) (a.24)
b -

Q,(a,b) = Q(a,b), Q_(2,0) = 1, Q_(0,b) = T'(m,b%/2)/T(m) (4.25)

24. Marcum's Q-function [HN58.5.3, VTp.395]

@

expl-2(a + 891 [ (a/m)* 1(ad) , a <
k=0

Q(a,b)

1 - exp[-JZ'(aa + 59)] (b/a)K I(ab) , b<a (A.26)

1

I t~18

k
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25. Integral of Bessel function, exponential and power [AB11.4.28, ER7.7.3(22),

GR6.621(1)]
w (b/a)t rEis
[ ax exp(-azxz) xs"1 I (2bx) = -2 1F1[(r+s)/2;r+1;(b/a)2]
0 r 2ad T'(r+1)
_ 1 r -s 2,2 (r) 2,2
= 3 F[(s-r)/2] (b/a)" a~~ exp(b“/a®) L((s-r)/2)-1('b /a%) (A.27)

where Re a2 > 0, Re (s+r) > 0.

26. Interchange of order of summation [HNs.4.1, RAs.37]

L= @« o« Q@ -
Ll

n
I I tm = [ I fkm = [T flk,n-k)
n=0 k=0 k=0 n=0 n=0 k=0

[

n
71 f(n-k,k) (a.28)
n=0 k=0

27. Powers of series [AB3.6.20, GRO.314]

« I a, x€ )P = ) e, XK , (4.29)
k=0 k=0
where
n m
Cg T3y s Cp = ;i— Z (kn-m+k) I for m>1 (A.30)

0 k=1

28. Double factorial function [ABp.258, GRp.x1liii]
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(o)1 = (2)(W)...(2n) = 2% a1, (2n-1)1! = (1)(3)...(2n=1) (A.31)

<9. Generating function for Stirling numbers of the first kind [AB24.1.3,

HN52.2.1]
n t m
(-x) = (-7 [ x" s,(n,m) (8.32)
m=0

30. Recurrence relation for Stirling numbers of the first kind [AB24.1.3]

51(n+1,m) = ST(n,m-1) - nS1(n,m) , n>2m>1 ; S1(n,0) = 60n’ (A.33)

1

S,(n,1) = -1 (n-1)1, S,(n,n) = 1, S,(n,n-1) = -n(n-1)/2 (A.34)

31. Generating function for Stirling numbers of the second kind [AB24.1.4,

HN52.2.15]

n
n m
(-x)" = mZO (-1 (x) S,(n,m) (A.35)

32. Recurrence relation for Stirling numbers of the second kind [AB24,1.4]

Sa(n+1,m) = msz(n,m) + Sz(n,m-1) , namp1 ; (A.36)

S,(n,0) = 60n, 5,(n,1) = S,(n,n) = 1, S,(n,n-1) = n(n-1)/2 (A.37)




33. Series involving Stirling numbers of the second kind [HW¥6.7.22]

-k

n m
I em &/ ks 2% 7 () (76 sy(mk) (4.38)
=1

k=1 k

34. Generating function for generalized Euler numbers of order (-m) [HN51.7,

MOp.32]
(cos £)® = 0¥ 2 g5 (8.39)
k=0
From Hansen [HN88.1.2], we have
m o (—l)k 2k ;.-m  w m 2k
(cos t) = kzo Gt t {2 ) n (2n-m)“"71 . (A.%0)
= n=0

By comparing Eq.(A.40) and Eq.(A.39), we obtain [Hanlon, Peterson, and Gardner,

1980]

(«m) _ ,-m
EZk = 2

ne~ag

[ m] (2n-m)3K . (A.41)
n
n=0

35. Generating function for Bernoulli numbers [AB23.1.1, ER1.13(1), GR9.610,

HN50.5.3, RAs.153(8)]

/(¥ -1= § B t"/n1 , [t|<en (A.42)

For example,




BO=1, B, = -1/2 , Bz=1/6, Bu=-1/30
36. Series expansion for log\cos x) in Bernoulli numbers [AB4.3.72,

GR1.518(2), HN50.6.8]

(-1)" 2201 2284y B 2D rncon) 11, Ixlcms2

1

log{cos x) = on

N~ 8

n

(a.43)

ER1.20(5),

(A.44)
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APPENDIX B

PROBABILITY DENSITY FOR FADING INTENSITY
B.1, Univariate Density

Let y1,...,yn be independent and identically distributed normal random
variables with mean W and variance 02. The Euclidean norm of these variables,

designated f, is defined by

n
£= (] y2HV2, (B.1)

It is well-known that f has a noncentral chi distribution with n degrees of
freedom and its probability density is given by ([Miller, Bernstein, and

Blumenson, 1958],{Nakagami, 1960]

mem

=7
g™

pf(x) = exp{-m(x2 + 82)/Q} Im_1(2msx/Q) , x>0 (B.2)

where IP is a modified Bessel function of the first kind of order r and

m = n/2 |, Q:noz, 8=n'/2u. (B.3)
Although this development requires n to be a positive integer, Eq.(B.2) 1is a
valid fading probability density for all m not less than 1/2. 1In this context,

f is referred to as a generalized Rayleigh variate (generalized n-distributed

variate) (Nakagami, 1960],[Miller, Bernstein, and Blumenson, 1958]. For a

e —

o

P

1ad i
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random variable whcse probability density is given by Eq.(B.2), its
distribution is represented by f ~ R(m,B,Q). The moments of f are readily

evaluated by using Eq.(A.27) and are given by [Nakagami, 1960),[Krishnan, 1967]

<> = Tm+ v/2) (/"% F (-v/2;m;-082/2) / T(m)
(M-
= Tv/z + 1) (m™2 LBV (ng?/) , veam > -1 (B.4)
where < > represents expectation, F is a confluent hypergeometric function,

11

and Lﬁa) is a generalized Laguerre function. Note that the mean square value

of £ is just

<> = Q4+ B° , (B.5)

The generalized Rayleigh distribution encompasses a wide class of
distributions which are wuseful in the study of communications over fading
channels. For m equal to one and ~ equal to =zero, f has a Rayleigh
distribution. For m equal to one and B8 arbitrary, f has a Rician distribution
(Nakagami-Rice or n-distribution). 1In this case, 62 is the specular power and
2 is the mean square value of the Rayleigh component. The depth of fading can

be measured by the specular power ratio (the ratio of the specular power to the

mean square value), designated R and defined by
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R= £/ (a+ &) . (B.6)

The depth of fading increases with decreasing R. However, Rician fading can
never be deeper than Rayleigh fading (8 = 0). For 3 equal to zero and m not
less than 1/2, f has a Nakagami distribution (m-distributed). In this case,
the mean square value of f is @ and the variance of f2 is (Qz/m). Hence, m is
the inverse of the normalized variance of f2 {Nakagami, 1960]. The depth of
fading increases with decreasing m. For values of m less than one, the fading
is more severe than Rayleigh fading, and for values of m greater than one, is
shallower than Rayleigh fading. Consequently, Rayleigh fading is a special
case of both Rician and Nakagami fading. In the general case, the fading

decreases as either m or £ increases.

The cumulative distribution function for a generalized Rayleigh variate is

given by

1/2

Fo(x) = 1 - [ms?/2)'/? , (am®/2)V/?) (B.7)

where Qm is a generalized Marcum's Q-function. To obtain an alternate

expression, we make use of the Laguerre series for modified Bessel functions

(Eq.(A.23)) to express the probability density as

o k{ 2} m+k-1
2nx 2 (-1) mx (m=-1)

p(x) = == exp(-md3~/Q) ) —(/ L
£ ar (m) k§ (m)y

1
K
2y

(%) . (B.8)

Integration of the probability density is then straightforward and provides

SESV
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[(Hanlon and Gardner, 1980]
w k i
1 20y 3 DS [gd] gy o
Fo(x) = T3y exp(-mé /Q)kzo TR L (/) (8.9)

The probability that one generalized Rayleigh variate exceeds another when

they are independent is given by

o]

X
[ dx pf(x) [ dy pf(y)
0 2 0 1

Pr{f2 > f1}

= [ax p.(x) Fx) = <F_(£,)> . (B.10)
0 f2 f‘1 f1 2

By using Eq.(B.9) and Eq.(B.4), we readily obtain

2 @ K m1+k
Pr‘{x2 > f1} = exp(-m1b1/91) 1 (-1 (m192/m291)
k=0
(m,-1) (m,-1)
1 2, 2 2.
Lk (m181/u1) Lk+m (-m282/Q2) . (B.11)

1

Note that if the ratio (m1Q2/mZQ1) is greater than one, the series does not

converge and the representation given by Eq.(B.11) is formal. In this case, we

can use the alternate expression

Pr{f‘2 > r1} =1 - Pr{f1 > fll (B.12)

2
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whiech can be written from Eq.(B.11) by inspection. Several special cases of

the general result are of interest:

(a.) For 51 and f2 both Rician (m1=m2=1), use of Eq.(A.22), Eq.(A.20), and

Eg.(A.26) provides [Schwartz, Bennett, and Stein, 19661, [Van Trees, 1963]

1/2

} 22 1/2 2,0 a
Pr{f2 > f.} = Q([ZBZ/(Q1+QZ)] ) [?81/(“1+32)] )

1

_ - - 2 Q2 o) A e} { I
[“1/(Q1+92)] expl (81+u2)/(~1+u2)] I0[23182/(u1+92)] . (3,12

(b.) For f, and ¥ =0), Eq.(B.11)

1 both Nakagami m-distributed (31=8

2 2

readily reduces to

. . o ~ \
2F1(m1,m1+m2,m1+1,-mlu2/m2wl) . (B.14)

After linear transformation of the hypergecmetric function and use of Eq.(A.17)

and Eq.(A.18), we obtain

- = (m 0 2 o)
Prif, > 31 = Li(mp,my) b= (o 1 Oy

{c.) For f2 one-sided Gaussian (m2 = 1/2, 3, = 0), we cbtain &y 1.--

substitution,

RSP Y> T RS —m—- |
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m,-1/2 w (m

! +1/2)k

1

-1 K k
k=0 (m1+1)k

Pr{f2 > r1} = [ ] exp(-m1B$/Q1) (-1)

(B.16)

1
2m, R (m,-1)
12 1 2
l ] L (m181/91) .

Table B.1 lists the results for several additional special cases.
B.2. Bivariate Density

Let the pairs (y1‘,y12),...,(yn1,yn2) be independent and identically
distributed where the elements yj1 and yjz are jointly normal for all j with

means u, and Hys variances of and 02, and correlation coefficient o, Then the

norms, f1 and fé, defined by

£o= O] ¥y (B.17)

each have a noncentral chi distribution with n degrees of freedom and the
bivariate density, for the magnitude of p less than one, is given by [Miller,

Bernstein, and Blumenson, 1958],[Krishnan, 19671

1-m 2 2
pf1f2(x1,x2) = A (;D1D2) X, x, exp(-B1x1-82x2)
° 1/2.1/2
L Ck Ir(201x1) Ir(2D2x2) Ir(ZDB1 B, xlxz) (B.18)

where
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TABLE B.1

SPECIAL CASES FOR PROBABILITY THAT ONE GENERALIZED RAYLEIGH VARIATE EXCEEDS

ANOTHER WHEN THEY ARE INDEPENDENT

Rician Rayleigh

.Nakagami Nakagami

Nakagami Rayleigh

Nakagami ®Gaussian

Rayleigh Rician

Rayleigh Nakagami

Rayleigh Rayleigh

Rayleigh #*Gaussian

#Gaussian Nakagami

%Gaussian Rayleigh

#Gaussian ®*Gaussian

(m1,81;m2,82) Pr{f2 > f1}
2
(1,31;1,0) (92/(91 + 92)] exp[-31/(91 + 92)]
(m1,0;m2,0) It(m1,m2) , t = [m192/(m192+m291)]
™
(m,,0;1,0) [m192/(91+m192)]

. R Q (9 Q
(m,,031/2,0) I.(m,1/2) , t = [2m,%,/(% +2m,2,)]

2
(1,051,8,) 1 = [2,/(2,40,)] expl-62/(2,+2,)]
(1,0;m,,0) 1 - [mB,0,(Q Q )]m2

103, = Lyt Lipemaiy
(1,0;1,0) [2,/(2,+0,)]

(1,0;1/2,0) 1 - [91/(Q1+292)]1/2

(1/2,0;m2,0) It(1/2,m2) , t o= [92/(92+2m291)]

1/2
(1/2,0;1,0) [92/(92+2Q1)]

172

. 2 gin-!
(1/2,031/2,0) £ sin”™'[2,/(2,40,)]

8%Gaussian refers to one-sided Gaussian.

T e e e o e
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(2m—2)k(m)k

r=ikem-1 , C, ’?EZTTE"T?T‘ (B.19)

wp = By - 9329:/2“;/2 v oWy ® B0 - °3191/29;/2 (B.20)

B, = ala (16917 , D, = mule,0,(1-%)1"" (B.21)

A = 18.8,01-0%)r(m) (we"/%0]" %)% expl-(mefsa) - 03B)1 . (m.22)
Note that in the Rician case (m = 1), we have

lim C = lm (2m-2), / (m-1), = €, (B.23)

m>1 o1

where Ek is Neumann's factor, which is defined to be equal to 2 when k is not
zero, and equal to 1 when k is zero. As before, Eq.(B.18) is a valid bivariate
probability density for all m not less than 1/2 and, in this context, is the
Joint probability density for correlated generalized Rayleigh variates with

marginal distributions f, “ R(m,8,,2,) and f n R(m,8,,2,).

2

In general, the expression for either the joint moments or the correlation
between f1 and rz is very complicated [Krishnan, 1967]); however, for the
Nakagami or Rayleigh cases, the normalized covariance of rf and fg (power
correlation coefficient) is very simply related to the correlation coefficient

of the underlying Gaussians, that is, [Nakagami, 1960]




COV(ff,rg) / [Var(f?) Var(fg)]1/2 = 02 .

The probability that one generalized Rayleigh variate exceeds another in
the correlated case is given by

)

(-]

Prif, > £, = [dx, [ ax, pp (x,,x,) . (B.25)
0 0 172

The inner integration can be evaluated by expanding the exponential and Bessel

functions involving x, (Eq.(B.18)) into nested power series in the variable

X, and interchanging the order of integration and summations. The outer

integration is then readily evaluated by interchanging the order of integration

and summations and using Eq.(A.27). Use of Eq.(A.28) and Eq.(A.11) then yields

2,m 2 T k+m k
Prif, > £,} = (1-0°)" exp(-m6{/,) kgo (2,/2,)€*% (-1)

2

2 2
Gk(m,D1/B1,D2/BZ,O )

k (2m-2) (txy)nlz k-n (l-k-m)s(1+k+m)s

Gk(m,x,y,t) =

n=0 (m-1)n n!

i (nm)s s!

s _ (nem=1) (nem=-1)
t Lk"n-s (X) Lk’ms (-Y) .
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As in the independent case, if the ratio (92/91) is greater than one, we can

evaluate the complement of the probability (Eq.(B.12)).

For the case where f1 and tz are independent (p=0), the only contribution
from the sums over s and n in G, is the first term (n=0,s8=0) and Eq.(B.26)

reduces to Eq.(B.11) for m, and m2 equal to m. The result also simplifies

considerably if f1 and f, are both Nakagami m-distributed. In this case,

2

D1 and D, are both zero and the only contribution from the sum over n in Gk is

2
the first term (n=0). By noting that

L{ (o) = [“*a] , (8.28)

we then have

(2m), (m)
. 2m=1 2\m k k k k+m
Prif, > £} = [m ] (1-0%) k2=:0 o Ny (-1° @y/0,)
2F1(-k,k+2m;m;p2) . (B.29)

If we further specialize to the case where r1 and f2 are both Rayleigh

distributed (m=1), we obtain

MU @) (k1% L (8.30)

2 a
Prif, > £,} = (19°) k§1 (-1




APPENDIX C

SERIES EXPANSION FOR PROBABILITY OF ERROR

The probability of error is given by

PriE} = [ dy f dx psz(x,y) . (c.1)
0 0

To develop a series expansion, the joint density of S and Z is expanded in a

one-dimensional Taylor series about x equal to a, that is,

Py (Xs¥) . (c.2)
Hence, the probability of error can be represented as

)4 T (x-a)® 3"
dy dx p__(x,y) . (C.3)
g nzs n! ax" sz X=a

Pr{E} =

O — 8

By interchanging the order of integrations and summation and by noting that the
partial derivatives evaluated at x equal to a are not a function of x, we

obtain

prig) s | L Tay 2op_(xy|  Jax (x-w? . (C.4)
ns0 P! J 3x" 3% xza 0

After evaluating the integration over x, we have
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E (11), ;dy aups (x,y)
n=0 ‘o 0 ax® 3% b'¢

(y-a)™' - ()™, (c.5)

=32

Pr{E} =

n+1

By using the binomial theorem (Eq.(A.9)) to expand (y-a) ', Eq.(C.5) becomes

n

v 1 ? ) nl [n+1 m n-m+1
Pr{E} = dy p_.(x,y) ] y (-a) . (C.6)
n=zO (n+1)! ({ ax? = 52 ’ :La m=)-1 o

After again interchanging the order of integration and summation and then

interchanging the order of integration and partial differentiation, we obtain

b 1 Ml on nemet! 3% % m
Pr{E} = | =7 | [ ] (-a) —_— dy vy p_ (x,y) . (€.7)
n=0 (n+1)! ne1 m 5 x? 6( sz x=a

The joint density of S and Z equals the product of the conditional density of Z

given S times the marginal density of S; Eq.(C.7) then yields

Pri{E} = E S nfl n+1} (_a)n-mﬂ
) n=0 (n+1)1 m=1 n
° (x) ? n (y|s=x) | (c.8)
p_(x d S=x . C.
ax" 8 0 VY Pyt =a

Since the probability density of Z is symmetric about the origin, the remaining

integral is half the m-th conditional absolute moment of Z given S, that is,

<|z|®|ssx> 22 [ay y® p ML) (c.9)
0 zZlS

where < > represents expectation. After translating the index of summation, we

obtain the series expansion for Pr{E} about x equal to a:




9y
.1 v 1 ¢ fn nem %71 m
Pr{E} = 35 nZI = mZ1 [m] (-a) = Pg(x) <|z| s=x>xla . (c.10)

For the case where a equals zero (Maclaurin series), the only contribution from
the inner series is for m equal to n, In this case, we have [Hanlon and

Gardner, 1979 and 1980]

m~-1
S=x> ‘ (C.11)
x=0

Pr{E} =

T
f ~1 8

— p._(x) <|Z|m
=1 m! axm-1 s

For the special case where S and Z are independent, the conditional absolute

moments of Z are just the absolute moments of Z and Eq.(C.10) becomes

Pri{E} = +

n
T O R [;] (-a)" <z [% . (c.12)

1
n=1 ) m=1

Equation (C.11) becomes

Pr{E} = -;_- ) ;‘17 pg“'”m) <z . (c.13)
n=1

It should be noted that in Eq.(C.12) the average power of the interference,
i.e., <22>, contributes to the second and higher terms of the series over n.
In Eq.(C.13), the average power of the interference contributes only to the
second term of the series. Since one would intuitively expect the probability
of error to be strongly dependent on the average power of the interference,

Eq.(C.13) would appear to be a more natural ordering likely to provide faster

convergence. Additionally, the derivatives of the intended signal's
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probability density, pé““’

» 1s in general of simpler form when evaluated for a
equal to zero, as opposed to some other value of a. Similarly, Eq.(C.11) is

generally preferable to Eq.(C.10).

As an example, the series expansion given by Eq.(C.13) is used to evaluate
the probability of error when S and Z are independent, S is a generalized
Rayleigh variate with distribution parameters (m1, By 91) where 2m1 is
restricted to be an integer, and IZI is a generalized Rayleigh variate with
parameters (mz, Bys 92). From Eq.(B.8), it is readily shown that the even
derivatives of the density of S at the origin are zero and the odd derivatives
at the origin are nonzero only if the order of the derivatives is greater than
or equal to (2m1¥1). The derivatives are then (for n 2 m,)

-1) )
(mIBl

n-m (m

Do) = (-1) ! [(20)1/n!] (m,72))" exp(-m,g2/0,) L L

(2n-
p _m1

s /Ql) (c.1s)

The moments of |Z| are given by Eq.(B.4) and the probability of error is

readily shown to be [Hanlon and Gardner, 1980]

g n+m
PriE} = T exp(-mg%/2,) | (-1 (ma/ma)
n=0
(m,-1) (m,-1)
1 2 2 2
Ln (m181/91) an‘I (-mzsz/nz) . (C.15)

This result is consistent with Eq.(B.11).




APPENDIX D

CROSS~CORRELATION MOMENTS FOR RANDOM CODES

D.1. Moments for Integral Qffset

The probability mass function for the code cross-correlation under the
condition of integral offset for binary symmetric random codes of length L (L

chips per data bit) is given by

f L -L<k<L
27l |Lek| , Kk mod2 = L mod2
2
Pr{c = k} = (D.1)
L 0 , otherwise.

It can be readily shown that the odd moments are zero and the even moments are

given by
2n, _ oL % [L 2n _ (L)
> =27 ¥ [k] (2k = L) = E, (D.2)
n
k=0
where Eé;L) is a generalized Euler number of order (-L). However, this form is

not very convenient since L can be very large. By using the binomial theorem
(Eq.(A.9)), Eq.(A.38), and the generating function for Stirling numbers of the

first kind (Eq.(A.32)), the even moments can be expressed as a polynomial of

degree n in the code length, i.e.,

Lo
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n
«® = 7 oa LD

for n>1 (D.3)
m=1 m,n

where the coefficients (Aln n) are given in terms of Stirling numbers of the
b

first (S1) and the second (32) kinds by the relation [Hanlon, Peterson, and

Gardner, 1980]

2n-m K m-1 on r
Am,n = kZO 2 rgo { r] (-1 S1(2n-r-k,m—r) SZ(Zn-r,an-r-k) . (D.W)

Provided n is not too large, this expression readily generates the polynomial
coefficients. However, it is desirable to obtain closed-form expressions for
the coefficients of at 1least the higher-order powers of L, since for large
values of L (relative to nz), the moments can be approximated very accurately
by one or two higher-order terms of the polynomial. To obtain the closed-form
expressions for the coefficients, we make use of the characteristic function

for the cross-correlation. By using the probability mass function, we have

et 2 oL k [LJ eJ0(2k-L) (cos wt (D.5)
k=0 k

By applying the moment theorem and Taylor's theorem to Eq.(D.5), we obtain for
the coefficients:

A e e tcos w1 (D.6)
n° - -—m—!--d—m?n—- ogl{cos w . .

@, w=0

By applying the series expansion for log(cos w) (Eq.(A.U44)) and the result for

powers of series (Eq.(A.29)), we have




B Ag o= (VM Ly (0.7)
where
-n 2 X
Hyp=2 o+ B p=— PZ1 (rm-ker) G B _. o (D.8)
G, = (-0F 2271 (2272 y) By, / L(rst)(2re2)!] , (D.9)
i ) and the Bn are Bernoulli numbers. For example, for the highest-order

coefficients we have

L (2n)! / (at 2™ = (2n-1)1! (D.10)
An-1,n = -n{n-1) An,n /3 (D.11)
A2 ® -(n=2)(5n+1) A, /30 . (D.12)

For 1large values of L relative to nz, the even moments are approximately given

by

<@ + (2n=1)11 L% [1 = n(n=1)/3L] . (D.13)

This expression is exact for the second and fourth moments. Table D.1 1lists

the coefficients for the first five even moments.
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TABLE D. 1

COEFFICIENTS FOR POLYNOMIAL EXPRESSIONS OF CROSS~CORRELATION MOMENTS FOR RANDOM

2

n
CODES UNDER INTEGRAL OFFSET, <c“™> = [ A_ L.
m=1 '

n An,n An-1,n An—z,n An-3,n An-u,n
1 1

2 3 =2

3 15 =30 16

4 105 ~420 588 =272

5 945 -6300 16380 -18960 7936

D.2. Momepts for Arbitrary Qffset

The moments for an integral offset can be used to generate the moments for
an arbitrary offset. From Eq.(2.5), by taking the expectation over x, which is

uniform on the interval (0,1), while holding 4 and ¢, fixed, we obtain

1

N 1 n o _n-m
@leqiey> = /4 z c, C . (D.14)

Since S, and ¢, are independent for random codes and the odd moments of ¢ are

1
zero, then the odd moments of & are zero and the even moments are given by
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1 n

T 2n+1 mgs

<c2m><c2n-2m>

1 % (<L) _(-L)
2n+1 mg; Exn  Eop-om - (D.15)

It is clear from Eq.(D.3) and Eq.(D.15) that the even moments of & are also

polynomials of degree n in the code length and can be expressed as
for n>1. (D.16)

By solving for the coefficients in terms of the Am n’ we obtain [Hanlon,
’

Peterson, and Gardner, 1980]

1 o min(m,k)

m,n ol vy (D.17)

A A
k=0 r=max(0,k-n+m) r.k “m-r,n-k

where we define Ao k= 60k’ that is, the Kronecker delta. For large values of
?
L relative ¢to nz, we can approximate the even moments by two terms of the

polynomial involving the highest-order powers of L, that is,

52 (2n - 1)1 n 2n) 7t 2 2
@ . Zn- Dl L {:} (2m) {1 - [m2e(n-m)2-nl/3L} . (D.18)

This expression is exact for the second and the fourth moments. Table D.2
lists the coefficients for the first five even moments. It should be noted

that the moments for arbitrary offsets differ significantly from those for

integral offsets.

-




COEFFICIENTS FOR POLYNOMIAL EXPRESSIONS OF CROSS-CORRELATION MOMENTS FOR RANDOM

n
CODES, <&°™ = § D _ LD
m=1 m,n

n Dn,n
1 2/3
2 7/5
3 36/7
y 249/9

5 2190/11

Dn-1,n

-4/5
~64/7
-912/9
-13680/11

TABLE D.2

n-2,n

32/7
121279

34152/11

Dn-3,n

-544/9
-38528/11

Dn-u,n

15872/11




102

VITA

Robert Charles Hanlon was born in Indianapolis, Indiana, on 10 December
1946. He received the Bachelor of Science degree in Engineering from Case
Western Reserve University in 1968, and the Master of Science degree in
Electrical Engineering from the University of Kansas in 1973. He was
commissioned in the United States Air Force in February 1969. From 1969 to
1973, he served as a Communications-Operations Staff Officer at Headquarters,
Air Force Communications Service, Richards-Gebaur AFB, Missouri. From 1973 ¢to
1974, he was Chief, Communications Operations, 2129 Comm Sq, Ching Chuan Kang
Air Base, Taiwan, Republic of China. From 1974 to 1975, he was Chief,
Logistics 1Inspection, Tactical Communications Area, Langley AFB, Virginia.
From 1975 to 1977, he was Chief, Communications Maintenance, 1913 Comm Sq,
Langley AFB, Virginia. From 1977 to 1980, he was assigned to the Air Force
Institute of Technology for doctoral study in communications engineering at the
University of Illinois. He will receive the PhD degree in May 1980 and will be
assigned to the Command and Control Technical Center, Headquarters, Defense
Communications Agency. He currently holds the grade of Major in the Regular
Air Force. He 1is a member of IEEE, Eta Kappa Nu, and the Air Force

Association.

Robert Charles Hanlon is a coauthor of the papers:
1. Hanlon, R. C. and Gardner, C. S., "Error performance of direct sequence

spread spectrum systems on non-selective fading channels,™ JEEE Irans. Comm.,

vol. COM-27, no. 11, pp. 1696-1700, November 1979.




103

2. Hanlon, R. C. and Gardner, C. S., "Error performance of direct sequence
spread spectrum systems on nonselective generalized Rayleigh fading channels,"
submitted to IEEE Trans. Comm., February 1980.

’ 3. Hanlon, R. C., Peterson, G. D., and Gardner, C. S., "An empirical estimate
for the cross-correlation moments for Gold codes," submitted to IEEE Irans.

Comm., February 1980.




